DropRegion training of inception font network for high-performance Chinese font recognition

نویسندگان

  • Shuangping Huang
  • Zhuoyao Zhong
  • Lianwen Jin
  • Shuye Zhang
  • Haobin Wang
چکیده

Chinese font recognition (CFR) has gained significant attention in recent years. However, due to the sparsity of labeled font samples and the structural complexity of Chinese characters, CFR is still a challenging task. In this paper, a DropRegion method is proposed to generate a large number of stochastic variant font samples whose local regions are selectively disrupted and an inception font network (IFN) with two additional convolutional neural network (CNN) structure elements, i.e., a cascaded cross-channel parametric pooling (CCCP) and global average pooling, is designed. Because the distribution of strokes in a font image is non-stationary, an elastic meshing technique that adaptively constructs a set of local regions with equalized information is developed. Thus, DropRegion is seamlessly embedded in the IFN, which enables end-to-end training; the proposed DropRegion -IFN can be used for high performance CFR. Experimental results have confirmed the effectiveness of our new approach for CFR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Font Recognition of Chinese Character Based on Multi-Scale Wavelet

Optical character recognition system research has been acquired howling success, but the reconstruction of layout needs fonts of the characters. In this paper, a novel font recognition algorithm is proposed, which is based on multi-scale wavelet analysis. We adopt wavelet analysis and the grid method to deal with the character image, and extract wavelet energy density feature, and apply the BP ...

متن کامل

Chinese Text in the Wild

We introduce Chinese Text in the Wild, a very large dataset of Chinese text in street view images. While optical character recognition (OCR) in document images is well studied and many commercial tools are available, detection and recognition of text in natural images is still a challenging problem, especially for more complicated character sets such as Chinese text. Lack of training data has a...

متن کامل

Recognition of Multi-font English Numerals using SOM Neural Network

In this paper a new scheme is proposed for off-line recognition of multi-font numeral, using neural networks. Recognition of numerals has been a research area for many years because of its various applications. But there wasn't much research done for recognition of multi-font numerals. The approaches proposed so far, suffer from larger computation time and training because they must have a...

متن کامل

Font Distribution Observation by Network-Based Analysis

The off-the-shelf Optical Character Recognition (OCR) engines return mediocre performance on the decorative characters which usually appear in natural scenes such as signboards. A reasonable way towards the so-called camera-based OCR is to collect a large-scale font set and analyze the distribution of font samples for realizing some character recognition engine which is tolerant to font shape v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2018